
Conformal Field Theory and Gravity
Solutions to Problem Set 7 Fall 2024

1. Spinning fields

(a) Let’s go through the Ward identities for translations, dilatations, rotations, and
special conformal transformations.
Translational invariance requires

〈jµ(x)jν(y)〉 = fµν(x− y)

for some function fµν that depends only on x− y.
Rotational covariance requires fµν(x − y) to transform as a rank-2 tensor under
rotations. The only independent symmetric rank-2 tensor structures available are
δµν and (x−y)µ(x−y)ν

|x−y|2 . Thus, we can write the general form of fµν(x− y) as:

fµν(x− y) = g(x− y)

(
δµν +B

(x− y)µ(x− y)ν
|x− y|2

)
where B is a constant to be determined, and g is an undetermined function. Dilata-
tions with scaling dimension ∆ require a power-law behaviour for g:

g(x− y) =
1

|x− y|2∆
(1)

Therefore
fµν(x− y) =

1

|x− y|2∆

(
δµν +B

(x− y)µ(x− y)ν
|x− y|2

)
(b) We will derive the Ward identity for the special conformal transformation, as the

other equations are very similar.
Since ξµ(x) ∝ x and we set y = 0, we only need to consider the transformation of
jµ(x). Using the following

∂x′ν

∂x′µ = δνµ + 2(b · x)δνµ + 2(bµx
ν − bνxµ)

jµ(x
′) = jµ(x) + (2(b · x)xν − x2bν)∂νjµ(x)

(2)

we can expand the tensor transformation formula to first order, and find j′µ(x) =
jµ(x) + δjµ(x), with

δjµ = (2∆(b · x)δνµ + 2(bµx
ν − bνxµ))jν + (2(b · x)xν − x2bν)∂νjµ(x) (3)

Plugging this into the Ward identity, we get the desired result

〈δjµ(x)jν(0)〉 = 0{
(2∆(b · x) + 2(b · x)xρ∂ρ + x2bρ∂ρ)δ

µ
λ + 2(bλx

µ − bµxλ)
}
〈jµ(x)jν(0)〉 = 0

(4)
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(c) The first two properties from the first hint are immediate to check, so let us verify
the third one.
From the first property we obtain that det

(
Iρµ
)
= ±1, therefore∣∣∣∣∂x′

∂x

∣∣∣∣ = | det
(
Iρµ
)
|

x2d
=

1

x2d
(5)

Now, using the vector transformation under inversion we find

j′µ(x) =

∣∣∣∣∂x′

∂x

∣∣∣∣∆−1
d Iνµ(x)

x2
jν(x

′) =
Iνµ(x)

x2∆
jν(x

′) (6)

Hence we need to check

〈j′µ(x)j′ν(y)〉 =
Iρµ(x)

x2∆

Iσν (y)

y2∆
〈jρ(x′)jσ(y

′)〉 .
= 〈jµ(x)jν(y)〉 (7)

Equivalently,
Iρµ(x)

x2∆

Iσν (y)

y2∆
fρσ(x

′ − y′)
.
= fµν(x− y) (8)

Let us expand the LHS, using y → 0, y → ∞, and use the fact that 1
|x′−y′|2∆ = x2∆y2∆

|x−y|2∆

Iρµ(x)

x2∆

Iσν (y)

y2∆
fρσ(x

′ − y′) =
Iρµ(x)

x2∆

Iσν (y)

y2∆
Iρσ(x

′ − y′)

|x′ − y′|2∆

= Iρµ(x)I
σ
ν (y)

Iρσ(y
′)

|x− y|2∆
(
1 +O(x′/y′)

)
= Iρµ(x)I

σ
ν (y)

Iρσ(y)

|x− y|2∆
(
1 +O(x′/y′)

)
=

Iµν(x)

|x− y|2∆
(
1 +O(x′/y′)

)
=

Iµν(x− y)

|x− y|2∆
(
1 +O(x′/y′)

)
lim
y→0

fµν(x− y)

(9)

Note that this derivation would have proceded similarly even if you tried to used a
general value of y.

(d) Consider y = 0. Then

∂µ〈jµ(x)jν(0)〉 ∝ −2∆xµI
µν(x) + x2∂µI

µν ∝ (∆− d+ 1) = 0 (10)

Hence ∆ = d − 1. This ensures that the conserved charge Q ≡
∫
dd−1x nµjµ is

scale-invariant.

(e) The proof is similar to point 1 and 2, but more tedious. The efficient way to do this
is via the embedding space formalism.
Analogously to point 3, we require

∂µ〈T µν(x)T ρσ(0)〉 ∝ (∆− d) = 0 (11)

Hence ∆ = d− 1. This ensures that the charges generating conformal transforma-
tions are scale-invariant.
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2. Introduction to the embedding space formalism

(a) Using that
dP 2

0 = dP 2
d+1 = xµxνdx

µdxν dP µ = dxµ (12)
it is straightforward to see that

ds2 = −dP 2
0 + dP 2

d+1 + (dP µ)2 = δµνdx
µdxν (13)

(b) Let us take

P 0 = Ω(x)
1 + x2

2
P d+1 = Ω(x)

1− x2

2
P µ = Ω(x)xµ (14)

Then,

dP 0 = (∂µΩ)
1 + x2

2
dxµ + Ωxµdx

µ (15)

dP d+1 = (∂µΩ)
1− x2

2
dxµ − Ωxµdx

µ (16)

dP µ = (∂νΩ)x
µdxν + Ωdxµ (17)

Then by expanding explicitly all terms, we find that

ds2 = −dP 2
0 + dP 2

d+1 + (dP µ)2 = Ω2δµνdx
µdxν (18)

(c) Let us start by the two-point function. By Lorentz invariance, 〈O(P1)O(P2)〉 can
only be a function of scalar invariants built from P1 and P2, i.e. P 2

1 , P 2
2 and P1 ·P2.

Since we are on the light-cone, P 2
1 = P 2

2 = 0, thus

〈O(P1)O(P2)〉 = f(P1 · P2) (19)

Since this needs to satisfy the homogeneity property, it can only be a power-law,

f(P1 · P2) = const|P1 · P2|α (20)

where α is determined by the homogeneity property

f(λP1 · P2) = λ−2∆f(P1 · P2) =⇒ α = −∆ (21)

Thus
〈O(P1)O(P2)〉 =

const
|P1 · P2|∆

(22)

Note that on the physical section,

P1(x1) · P2(x2) = −
(
1 + x2

1

2

1 + x2
2

2

)
+

(
1− x2

1

2

1− x2
2

2

)
+ x1 · x2 = −1

2
(x1 − x2)

2

(23)
Thus,

〈O(x1)O(x2)〉 =
const′

|x1 − x2|2∆
(24)

For the 3-point function, we have

〈O(P1)O(P2)O(P3)〉 = f(P1 · P2, P1 · P3, P2 · P3) (25)
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Note that the correlator is invariant under permutations of (1, 2, 3), thus f should
be invariant under permutations of its 3 arguments. Also, the homogeneity property
implies again a power-law. Thus,

〈O(P1)O(P2)O(P3)〉 = (|P1 · P2||P1 · P3||P2 · P3|)α (26)

Finally, α is again determined from scaling which implies

λ6α = λ−3∆ =⇒ α = −∆

2
(27)

Thus,
〈O(P1)O(P2)O(P3)〉 =

const
|P1 · P2|∆/2|P1 · P3|∆/2|P2 · P3|∆/2

(28)

On the physical section, using P1(x1) · P2(x2) ∝ (x1 − x2)
2 as previously, we obtain

〈O(x1)O(x2)O(x3)〉 =
const′

|x12|∆|x13|∆|x23|∆
(29)

(d) For the two-point function of vector operators 〈OA(P1)OB(P2)〉, we impose Lorentz
covariance by noting that the result must be built out of PA

1 PB
2 or ηAB, with

Lorentz contractions that can only be made of P1 · P2, namely

〈OA(P1)OB(P2)〉 = a1η
ABf1(P1 ·P2)+a2P

B
1 PA

2 f2(P1 ·P2)+a3P
A
1 P

B
2 f3(P1 ·P2) (30)

where f1, f2 and f3 are power-laws because of homogeneity. Thus,

〈OA(P1)OB(P2)〉 = a1η
AB|P1 ·P2|α1 + a2P

B
1 PA

2 |P1 ·P2|α2 + a3P
A
1 P

B
2 |P1 ·P2|α3 (31)

Homogeneity implies

α1 = −∆ α2 = α3 = −(∆ + 1) (32)

Thus,

〈OA(P1)OB(P2)〉 =
a′1(P1 · P2)η

AB + a′2P
A
2 P

B
1 + a′3P

A
1 P

B
2

(−2P1 · P2)∆+1
(33)

We also impose that

(P1)A〈OA(P1)OB(P2)〉 = (P2)B〈OA(P1)OB(P2)〉 = 0 (34)

which implies a′2 = −a′1. Thus,

〈OA(P1)OB(P2)〉 = const.(P1 · P2)η
AB − PA

2 P
B
1

(−2P1 · P2)∆+1
+ a′3

PA
1 P

B
2

(−2P1 · P2)∆+1
(35)

The last term is irrelevant since vector operators are identified by the redundancy
OA(P ) ∼ OA(P ) + PAλ(P ).

(e) To go to physical space,

〈Oµ(x1)Oν(x2)〉 =
∂PA

1 (x1)

∂xµ
1

∂PB
2 (x2)

∂xν
1

〈OA(P1)OB(P2)〉 (36)
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Noting that
∂PA

1 (x1)

∂xµ
1

∂PA
2 (x2)

∂xν
2

ηAB = ηµν (37)

∂PA
1 (x1)

∂xµ
1

P2,A(x2) = −(x1,µ − x2,µ) (38)

P1 · P2 = −1

2
|x1 − x2|2 (39)

This gives

∂PA
1 (x1)

∂xµ
1

∂PB
2 (x2)

∂xν
1

(
ηAB − (P2)A(P1)B

(P1 · P2)

)
= Iµν(x1 − x2) (40)

Thus,
〈Oµ(x1)Oν(x2)〉 = const′ Iµν(x1 − x2)

|x− y|2∆
(41)

as derived in exercise 1.
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