Conformal Field Theory and Gravity

Solutions to Problem Set 7 Fall 2024

1. Spinning fields

(a)

Let’s go through the Ward identities for translations, dilatations, rotations, and
special conformal transformations.
Translational invariance requires

<],u(x).7u(y)> = f#v(J: - y)

for some function f,, that depends only on x — y.

Rotational covariance requires f,,(x — y) to transform as a rank-2 tensor under
rotations. The only independent symmetric rank-2 tensor structures available are
4, and E=vu@—y)y Thus, we can write the general form of f,,(z —y) as:

o=y (& — y)ulz — y)u)

|z —y|?

fuw(z —y) =g(x —y) (%V + B

where B is a constant to be determined, and ¢ is an undetermined function. Dilata-
tions with scaling dimension A require a power-law behaviour for g:

1
gz —y) = RS (1)

Therefore

(z — y)ulz — y)u>

1
fl,x—y:—(éy—i—B
wle =9) = s \ O 2P

We will derive the Ward identity for the special conformal transformation, as the
other equations are very similar.

Since £*(x) o z and we set y = 0, we only need to consider the transformation of
Ju(z). Using the following

ax/l’ v v v 14
Errie 0, +2(b-x)d; + 2(bpx” — bx,)

Ju(@') = ju(@) + (20 2)2” — &%), ()

we can expand the tensor transformation formula to first order, and find j,(z) =
Ju(x) 4+ 07, (x), with

(2)

0 = (2A(b - )0, + 2(buz” — b"w,)) gy + (2(b- x)z” — be”)a,,ju(a:) (3)

Plugging this into the Ward identity, we get the desired result
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The first two properties from the first hint are immediate to check, so let us verify
the third one.
From the first property we obtain that det (I [j) = +1, therefore

oz'| |det(If)] 1
or| = wa m )
Now, using the vector transformation under inversion we find
A—1
. o' |~ T I (x) . Ii(z) .
Ju(r) = e ng Ju(a’) = ;m Ju(@") (6)
Hence we need to check
. . If(x) I9(y) , . . o .
()i (9)) = ~55 wAOAfMAMDZUA@b@» (7)
Equivalently,
I*(x) I7(y) .
B0 e’ =) = fule ) )

Let us expand the LHS, using y — 0,y — oo, and use the fact that \xu;'\w = 5?5;2

AW@E@y<f_U_J%wE@LAf_w
724 yQA P o 724 yQA |x/_y/|2A

= @)= (14 0 )

|z —y[?2

_ fg(g;)fg(y)]f’”—@ (1 + O(x’/y’))

|z —y[>2
_ L)

|z —y[?2

(1+0@/))
- —]|’;”(_xy_|2gi) (1 + (’)(x//y/))

}Jli% f,uu(:E - y)

(9)

Note that this derivation would have proceded similarly even if you tried to used a
general value of y.

Consider y = 0. Then
9, (*(2)7%(0)) oc —2Az, 1" (x) + 220, I" x (A —d+1) =0 (10)

Hence A = d — 1. This ensures that the conserved charge Q = [d* 'z n*j, is
scale-invariant.

The proof is similar to point 1 and 2, but more tedious. The efficient way to do this
is via the embedding space formalism.
Analogously to point 3, we require

0,(T™ ()T* (0)) o (A — d) = 0 (11)

Hence A = d — 1. This ensures that the charges generating conformal transforma-
tions are scale-invariant.



2. Introduction to the embedding space formalism

(a)

Using that
dPy = dP;,, = z,x,d2"dz”  dP" = da*

it is straightforward to see that

ds® = —dPj + dP; | + (dP")?* = 6, dz"dx"

Let us take
0 L+a? in 1—a?
P” = Q(x)T P =Q(x) ) P* = Q(x)z"
Then,
1 2
dP’ = (0,9) T dzt 4+ Qu, dx*

1 — a2

dP™ = (0,9) dat — Qu, da"
dP* = (0,Q)z"dx” 4+ Qdz*
Then by expanding explicitly all terms, we find that

ds* = —dPy + dPj,, + (dP")* = Q% dz"dz"

(12)

(13)

(18)

Let us start by the two-point function. By Lorentz invariance, (O(FP;)O(F)) can
only be a function of scalar invariants built from P, and P, i.e. P, P} and P, - B,.

Since we are on the light-cone, P? = P = 0, thus

<O(P1>O(P2)> = f(P1 : Pz)

(19)

Since this needs to satisfy the homogeneity property, it can only be a power-law,

f(Py - Py) = const| Py - P|*
where « is determined by the homogeneity property
fOAPL-P) = \"22f(P,-P) = a=-A
Thus

const

(O(P1)O(P,)) = P BA

Note that on the physical section,
1—|—x%1+x%) N (l—xfl—xg

Pi(x1) - Po(ws) = — (

2 2 2 2
Thus,
const’
(O(21)O(22)) = o — A

For the 3-point function, we have

(O(P)O(P2)O(Ps)) = f(Py - Py, Py - P3, Py - P3)

3

)+ZE1'I2:—

(20)

(21)

(22)

1 2
5(1’1 - 952)

(23)

(24)

(25)



(e)

Note that the correlator is invariant under permutations of (1,2, 3), thus f should
be invariant under permutations of its 3 arguments. Also, the homogeneity property
implies again a power-law. Thus,

(O(P)O(%2)O(Rs)) = ([P - B||Py - Bs||[ Py - Py|)® (26)

Finally, « is again determined from scaling which implies

A
N =T = 0= -2 (27)

Thus,
const

(O(P)O(Py)O(P3)) = [Py~ B2 Py - Py A2[ P, - Pyl A2

(28)

On the physical section, using P;(x1) - Py(wa) o< (z1 — x9)? as previously, we obtain

const’

(O(21)O(2)O(3)) (29)

B |3512|A|$13|A|1523|A

For the two-point function of vector operators (O4(P,)OB(R,)), we impose Lorentz
covariance by noting that the result must be built out of P{* PP or n4?, with
Lorentz contractions that can only be made of P; - P5, namely

(O P)OP(Py)) = ay*” fi(Py- Py)+ay PP P3 fo( Py - Py) +as Py Py f5(P1- Py) (30)
where f1, fo and f3 are power-laws because of homogeneity. Thus,
(OA(P)OB(R)) = aynB| Py - Py|** 4+ aaPE P | Py - Py|*? + a3 P{* PP | Py - Po|™* (31)

Homogeneity implies

ap=—-A ay=a3=—(A+1) (32)
Thus, / AB | ./ pApPB | ./ pApB
(O (P)O"(py) = AU P2>77(_2]+3172]1322)il+ e (33)
We also impose that
(P1)A(ONP)OP(Py)) = (Po) (O (P1) O (P2)) = 0 (34)
which implies a}, = —a). Thus,
(OMP)OP(By) = const, L PP — PRPE DY (35)

(—2P; - Py)A+ 2P, - py)AH

The last term is irrelevant since vector operators are identified by the redundancy
OA(P) ~ OA(P) + PAX(P).

To go to physical space,

(0220, () = PPN OBT2) (54 p o5 (36)

I v
x| Ox
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Noting that

ozt oy NAB = T
OP(x1)
c‘;xﬁt 1 Py a(s) = = (21, — T2,)

1
P1'P2=—§|5B1—9€2|2

This gives

0P (1) OPY (w5) (2)a(P1)B
e (= Ry e

Thus,
(v, —
(Ou(21)O0,(22)) = const l]x(_lmmz)

as derived in exercise 1.

(40)

(41)



