Conformal Field Theory and Gravity

Solutions to Problem Set 7

Fall 2024

1. Spinning fields

(a) Let's go through the Ward identities for translations, dilatations, rotations, and special conformal transformations.

Translational invariance requires

$$\langle j_{\mu}(x)j_{\nu}(y)\rangle = f_{\mu\nu}(x-y)$$

for some function $f_{\mu\nu}$ that depends only on x-y.

Rotational covariance requires $f_{\mu\nu}(x-y)$ to transform as a rank-2 tensor under rotations. The only independent symmetric rank-2 tensor structures available are $\delta_{\mu\nu}$ and $\frac{(x-y)_{\mu}(x-y)_{\nu}}{|x-y|^2}$. Thus, we can write the general form of $f_{\mu\nu}(x-y)$ as:

$$f_{\mu\nu}(x-y) = g(x-y) \left(\delta_{\mu\nu} + B \frac{(x-y)_{\mu}(x-y)_{\nu}}{|x-y|^2} \right)$$

where B is a constant to be determined, and g is an undetermined function. Dilatations with scaling dimension Δ require a power-law behaviour for g:

$$g(x-y) = \frac{1}{|x-y|^{2\Delta}} \tag{1}$$

Therefore

$$f_{\mu\nu}(x-y) = \frac{1}{|x-y|^{2\Delta}} \left(\delta_{\mu\nu} + B \frac{(x-y)_{\mu}(x-y)_{\nu}}{|x-y|^2} \right)$$

(b) We will derive the Ward identity for the special conformal transformation, as the other equations are very similar.

Since $\xi^{\mu}(x) \propto x$ and we set y = 0, we only need to consider the transformation of $j_{\mu}(x)$. Using the following

$$\frac{\partial x'^{\nu}}{\partial x'^{\mu}} = \delta^{\nu}_{\mu} + 2(b \cdot x)\delta^{\nu}_{\mu} + 2(b_{\mu}x^{\nu} - b^{\nu}x_{\mu})
j_{\mu}(x') = j_{\mu}(x) + (2(b \cdot x)x^{\nu} - x^{2}b^{\nu})\partial_{\nu}j_{\mu}(x)$$
(2)

we can expand the tensor transformation formula to first order, and find $j'_{\mu}(x) = j_{\mu}(x) + \delta j_{\mu}(x)$, with

$$\delta j_{\mu} = (2\Delta(b \cdot x)\delta^{\nu}_{\mu} + 2(b_{\mu}x^{\nu} - b^{\nu}x_{\mu}))j_{\nu} + (2(b \cdot x)x^{\nu} - x^{2}b^{\nu})\partial_{\nu}j_{\mu}(x)$$
(3)

Plugging this into the Ward identity, we get the desired result

$$\langle \delta j_{\mu}(x)j_{\nu}(0)\rangle = 0$$

$$\left\{ (2\Delta(b\cdot x) + 2(b\cdot x)x^{\rho}\partial_{\rho} + x^{2}b^{\rho}\partial_{\rho})\delta^{\mu}_{\lambda} + 2(b_{\lambda}x^{\mu} - b^{\mu}x_{\lambda}) \right\} \langle j_{\mu}(x)j_{\nu}(0)\rangle = 0$$
(4)

(c) The first two properties from the first hint are immediate to check, so let us verify the third one.

From the first property we obtain that $\det(I^{\rho}_{\mu}) = \pm 1$, therefore

$$\left| \frac{\partial x'}{\partial x} \right| = \frac{|\det(I_{\mu}^{\rho})|}{x^{2d}} = \frac{1}{x^{2d}} \tag{5}$$

Now, using the vector transformation under inversion we find

$$j'_{\mu}(x) = \left| \frac{\partial x'}{\partial x} \right|^{\frac{\Delta - 1}{d}} \frac{I'_{\mu}(x)}{x^2} j_{\nu}(x') = \frac{I'_{\mu}(x)}{x^{2\Delta}} j_{\nu}(x') \tag{6}$$

Hence we need to check

$$\langle j'_{\mu}(x)j'_{\nu}(y)\rangle = \frac{I^{\rho}_{\mu}(x)}{x^{2\Delta}} \frac{I^{\sigma}_{\nu}(y)}{y^{2\Delta}} \langle j_{\rho}(x')j_{\sigma}(y')\rangle \doteq \langle j_{\mu}(x)j_{\nu}(y)\rangle \tag{7}$$

Equivalently,

$$\frac{I_{\mu}^{\rho}(x)}{x^{2\Delta}} \frac{I_{\nu}^{\sigma}(y)}{y^{2\Delta}} f_{\rho\sigma}(x' - y') \doteq f_{\mu\nu}(x - y) \tag{8}$$

Let us expand the LHS, using $y \to 0, y \to \infty$, and use the fact that $\frac{1}{|x'-y'|^{2\Delta}} = \frac{x^{2\Delta}y^{2\Delta}}{|x-y|^{2\Delta}}$

$$\frac{I_{\mu}^{\rho}(x)}{x^{2\Delta}} \frac{I_{\nu}^{\sigma}(y)}{y^{2\Delta}} f_{\rho\sigma}(x' - y') = \frac{I_{\mu}^{\rho}(x)}{x^{2\Delta}} \frac{I_{\nu}^{\sigma}(y)}{y^{2\Delta}} \frac{I_{\rho\sigma}(x' - y')}{|x' - y'|^{2\Delta}}$$

$$= I_{\mu}^{\rho}(x) I_{\nu}^{\sigma}(y) \frac{I_{\rho\sigma}(y')}{|x - y|^{2\Delta}} \left(1 + \mathcal{O}(x'/y') \right)$$

$$= I_{\mu}^{\rho}(x) I_{\nu}^{\sigma}(y) \frac{I_{\rho\sigma}(y)}{|x - y|^{2\Delta}} \left(1 + \mathcal{O}(x'/y') \right)$$

$$= \frac{I_{\mu\nu}(x)}{|x - y|^{2\Delta}} \left(1 + \mathcal{O}(x'/y') \right)$$

$$= \frac{I_{\mu\nu}(x - y)}{|x - y|^{2\Delta}} \left(1 + \mathcal{O}(x'/y') \right)$$

$$\lim_{x \to 0} f_{\mu\nu}(x - y)$$
(9)

Note that this derivation would have proceded similarly even if you tried to used a general value of y.

(d) Consider y = 0. Then

$$\partial_{\mu}\langle j^{\mu}(x)j^{\nu}(0)\rangle \propto -2\Delta x_{\mu}I^{\mu\nu}(x) + x^{2}\partial_{\mu}I^{\mu\nu} \propto (\Delta - d + 1) = 0 \tag{10}$$

Hence $\Delta = d-1$. This ensures that the conserved charge $Q \equiv \int d^{d-1}x \ n^{\mu}j_{\mu}$ is scale-invariant.

(e) The proof is similar to point 1 and 2, but more tedious. The efficient way to do this is via the embedding space formalism.

Analogously to point 3, we require

$$\partial_{\mu} \langle T^{\mu\nu}(x) T^{\rho\sigma}(0) \rangle \propto (\Delta - d) = 0 \tag{11}$$

Hence $\Delta = d - 1$. This ensures that the charges generating conformal transformations are scale-invariant.

2. Introduction to the embedding space formalism

(a) Using that

$$dP_0^2 = dP_{d+1}^2 = x_\mu x_\nu dx^\mu dx^\nu \quad dP^\mu = dx^\mu \tag{12}$$

it is straightforward to see that

$$ds^{2} = -dP_{0}^{2} + dP_{d+1}^{2} + (dP^{\mu})^{2} = \delta_{\mu\nu} dx^{\mu} dx^{\nu}$$
(13)

(b) Let us take

$$P^{0} = \Omega(x) \frac{1+x^{2}}{2} \quad P^{d+1} = \Omega(x) \frac{1-x^{2}}{2} \quad P^{\mu} = \Omega(x)x^{\mu}$$
 (14)

Then,

$$dP^{0} = (\partial_{\mu}\Omega)\frac{1+x^{2}}{2}dx^{\mu} + \Omega x_{\mu}dx^{\mu}$$
(15)

$$dP^{d+1} = (\partial_{\mu}\Omega)\frac{1 - x^2}{2}dx^{\mu} - \Omega x_{\mu}dx^{\mu}$$
 (16)

$$dP^{\mu} = (\partial_{\nu}\Omega)x^{\mu}dx^{\nu} + \Omega dx^{\mu} \tag{17}$$

Then by expanding explicitly all terms, we find that

$$ds^{2} = -dP_{0}^{2} + dP_{d+1}^{2} + (dP^{\mu})^{2} = \Omega^{2} \delta_{\mu\nu} dx^{\mu} dx^{\nu}$$
(18)

(c) Let us start by the two-point function. By Lorentz invariance, $\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\rangle$ can only be a function of scalar invariants built from P_1 and P_2 , i.e. P_1^2 , P_2^2 and $P_1 \cdot P_2$. Since we are on the light-cone, $P_1^2 = P_2^2 = 0$, thus

$$\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\rangle = f(P_1 \cdot P_2)$$
 (19)

Since this needs to satisfy the homogeneity property, it can only be a power-law,

$$f(P_1 \cdot P_2) = \text{const}|P_1 \cdot P_2|^{\alpha} \tag{20}$$

where α is determined by the homogeneity property

$$f(\lambda P_1 \cdot P_2) = \lambda^{-2\Delta} f(P_1 \cdot P_2) \implies \alpha = -\Delta$$
 (21)

Thus

$$\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\rangle = \frac{\text{const}}{|P_1 \cdot P_2|^{\Delta}}$$
 (22)

Note that on the physical section,

$$P_1(x_1) \cdot P_2(x_2) = -\left(\frac{1+x_1^2}{2} \frac{1+x_2^2}{2}\right) + \left(\frac{1-x_1^2}{2} \frac{1-x_2^2}{2}\right) + x_1 \cdot x_2 = -\frac{1}{2}(x_1 - x_2)^2$$
(23)

Thus,

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\rangle = \frac{\text{const'}}{|x_1 - x_2|^{2\Delta}}$$
 (24)

For the 3-point function, we have

$$\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\mathcal{O}(P_3)\rangle = f(P_1 \cdot P_2, P_1 \cdot P_3, P_2 \cdot P_3) \tag{25}$$

Note that the correlator is invariant under permutations of (1, 2, 3), thus f should be invariant under permutations of its 3 arguments. Also, the homogeneity property implies again a power-law. Thus,

$$\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\mathcal{O}(P_3)\rangle = (|P_1 \cdot P_2||P_1 \cdot P_3||P_2 \cdot P_3|)^{\alpha} \tag{26}$$

Finally, α is again determined from scaling which implies

$$\lambda^{6\alpha} = \lambda^{-3\Delta} \implies \alpha = -\frac{\Delta}{2} \tag{27}$$

Thus,

$$\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\mathcal{O}(P_3)\rangle = \frac{\text{const}}{|P_1 \cdot P_2|^{\Delta/2}|P_1 \cdot P_3|^{\Delta/2}|P_2 \cdot P_3|^{\Delta/2}}$$
(28)

On the physical section, using $P_1(x_1) \cdot P_2(x_2) \propto (x_1 - x_2)^2$ as previously, we obtain

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\rangle = \frac{\text{const'}}{|x_{12}|^{\Delta}|x_{13}|^{\Delta}|x_{23}|^{\Delta}}$$
(29)

(d) For the two-point function of vector operators $\langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle$, we impose Lorentz covariance by noting that the result must be built out of P_1^A P_2^B or η^{AB} , with Lorentz contractions that can only be made of $P_1 \cdot P_2$, namely

$$\langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle = a_1\eta^{AB}f_1(P_1\cdot P_2) + a_2P_1^BP_2^Af_2(P_1\cdot P_2) + a_3P_1^AP_2^Bf_3(P_1\cdot P_2)$$
 (30)

where f_1 , f_2 and f_3 are power-laws because of homogeneity. Thus,

$$\langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle = a_1\eta^{AB}|P_1 \cdot P_2|^{\alpha_1} + a_2P_1^BP_2^A|P_1 \cdot P_2|^{\alpha_2} + a_3P_1^AP_2^B|P_1 \cdot P_2|^{\alpha_3}$$
(31)

Homogeneity implies

$$\alpha_1 = -\Delta \quad \alpha_2 = \alpha_3 = -(\Delta + 1) \tag{32}$$

Thus,

$$\langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle = \frac{a_1'(P_1 \cdot P_2)\eta^{AB} + a_2'P_2^A P_1^B + a_3'P_1^A P_2^B}{(-2P_1 \cdot P_2)^{\Delta+1}}$$
(33)

We also impose that

$$(P_1)_A \langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2) \rangle = (P_2)_B \langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2) \rangle = 0 \tag{34}$$

which implies $a_2' = -a_1'$. Thus,

$$\langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle = \text{const.} \frac{(P_1 \cdot P_2)\eta^{AB} - P_2^A P_1^B}{(-2P_1 \cdot P_2)^{\Delta+1}} + a_3' \frac{P_1^A P_2^B}{(-2P_1 \cdot P_2)^{\Delta+1}}$$
 (35)

The last term is irrelevant since vector operators are identified by the redundancy $\mathcal{O}^A(P) \sim \mathcal{O}^A(P) + P^A \lambda(P)$.

(e) To go to physical space,

$$\langle \mathcal{O}_{\mu}(x_1)\mathcal{O}_{\nu}(x_2)\rangle = \frac{\partial P_1^A(x_1)}{\partial x_1^{\mu}} \frac{\partial P_2^B(x_2)}{\partial x_1^{\nu}} \langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle \tag{36}$$

Noting that

$$\frac{\partial P_1^A(x_1)}{\partial x_1^{\mu}} \frac{\partial P_2^A(x_2)}{\partial x_2^{\nu}} \eta_{AB} = \eta_{\mu\nu} \tag{37}$$

$$\frac{\partial P_1^A(x_1)}{\partial x_1^{\mu}} P_{2,A}(x_2) = -(x_{1,\mu} - x_{2,\mu})$$
(38)

$$P_1 \cdot P_2 = -\frac{1}{2}|x_1 - x_2|^2 \tag{39}$$

This gives

$$\frac{\partial P_1^A(x_1)}{\partial x_1^{\mu}} \frac{\partial P_2^B(x_2)}{\partial x_1^{\nu}} \left(\eta_{AB} - \frac{(P_2)_A(P_1)_B}{(P_1 \cdot P_2)} \right) = I_{\mu\nu}(x_1 - x_2) \tag{40}$$

Thus,

$$\langle \mathcal{O}_{\mu}(x_1)\mathcal{O}_{\nu}(x_2)\rangle = \operatorname{const}' \frac{I_{\mu\nu}(x_1 - x_2)}{|x - y|^{2\Delta}}$$
(41)

as derived in exercise 1.